
Supplementary information

Supplementary note 1: Studied devices. We studied six different superlattice devices as summarized
in Supplementary Table 1. Here W refers to the device width, Cg is its gate capacitance and θ is the angle
between the crystallographic axes of hBN and graphene. The latter was calculated from the measured period
of BZ oscillations1.

Table S1

Device W (µm) θ (◦) Cg (µF/m2)

D1 17 0.4 101
D2 4 0 98
D3 3 0.2 104
D4 3.2 0.5 96
D5 2 0.2 106
D6 2 0.3 98

Supplementary note 2: Magnetic focusing in graphene superlattices. As a further confirmation of the
devices’ high quality, we report transverse magnetic focusing (TMF) experiments at low B (Supplementary Fig.
1). The observation of resistance oscillations due to TMF confirms that Dirac fermions travel ballistically across
the device2,3, forming skipping orbits extending over hundreds of superlattice unit cells. TMF measurements
are also known to provide information about the Fermi surface topography in clean metals, including graphene
superlattices2,3. Our TMF results are in agreement with those reported previously2,4.

Figure S1: Transverse magnetic focusing. Measurements using contacts separated by 1.5 µm (closest
contacts for device D1 pictured in Fig. 1a of the main text); T = 10 mK.
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Supplementary note 3: Determining mobility and mean free path of BZ fermions. To evaluate
the mobility of Brown-Zak fermions, we use the standard formula µ = σxx/(nBZF e) where nBZF is the carrier
density of BZ fermions and σxx = 1/ρxx . Note that the latter expression is exact at φ = φ0p/q (that is, it
does not contain ρxy because the effective magnetic field Beff acting on BZ fermions is zero). To determine
nBZF for a given Vg, we first used Hall measurements at small fields B ≤ 0.1 T to determine the geometrical
capacitance. Then, using longitudinal conductivity maps around the p/q fractions, we identified positions of
the neutrality points (NPs) as Vg into which Landau mini-fans converged (see Fig. 1c and Fig. 3a of the main
text). Finally, vHS were identified from Hall effect measurements as Vg where ρxy changed its sign without
exhibiting mini-fans (Supplementary Fig. 2b). As nBZF varies linearly across NPs and exhibits jumps at vHS,
the known geometrical capacitance allowed us to reconstruct nBZF (Vg) as shown in Supplementary Fig. 2a.
The mean free path l was calculated using the standard formula σxx = ge2/h((kF l)/2) where the Fermi wave
vector kF = (4πnBZF /g

(1/2) also depends on the BZ fermion degeneracy g. The final expression reads

l =
2

ρxx

h̄

e2

√
π

g nBZF
(S1)

Figure S2: Evaluating density of BZ fermions. Dependence of nBZF on gate voltage at φ/(φ0 = 1/2)
for device D1. b, Measured maps for the Hall resistivity around φ/(φ0 = 1/2). Colour scheme: blue and red
represent negative and positive ρxy, respectively. Regions around NPs are indicated by the grey semi-transparent
strips. The yellow strips mark vHS. The central green area covers the region dominated by the quantum Hall
effect of Dirac fermions from the main graphene spectrum (see Fig. 1c of the main text).
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Figure S3: Longitudinal resistivity ρxx for device D1. a, Measurements in zero field and b, for φ/φ0 =
1/2. These data were used to calculate the mobilities and mean free paths in Fig. 1 of the main text.

Supplementary Note 4: BZ fermions at higher order fractions. In Fig. 1 of the main text, we
presented µ and l for Dirac fermions and for BZ fermions at φ/φ0 = 1/2. For completeness, Supplementary Fig.
4 shows the same analysis for the case of φ/φ0 = 1/3 and 1/4. One can see that mobilities of BZ fermions with
the larger q still remain of the order of 106 cm2/Vs and their mean free path approaches values comparable to
the device width W , which suggests a notable contribution from edge scattering.

Figure S4: Ballistic transport of BZ fermions at unit fractions of the flux quantum. The data are
for device D1 at 10 mK for φ/φ0 = 1/3 (a) and 1/4 (b). The same presentation as in Figs. 1b,d of the main
text. We show the data for positive voltages because for mini-fans and vHS could accurately be identified only
for electron doping.
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Supplementary Note 5: Additional examples of ballistic transfer of BZ fermions. In the main text,
we have emphasized that, at fields B = Bp/q, BZ fermions move through the superlattice as if the applied
field were zero. The effective mass of BZ fermions depends on p/q because electronic spectra differ in different
magnetic minibands. Away from the exact Bp/q values, BZ fermions are expected1 to experience an effective
magnetic field Beff = B–Bp/q and, therefore, replicate magneto-transport effects known for charge carriers in
conventional 2D electronic systems. This includes the negative bend resistance that is one of the most distinct,
qualitative signatures of ballistic transport of charge carriers5–7. The effect can be understood as follows. With
reference to Fig. 2a of the main text, let us for simplicity consider positive charge carriers (hole-doping regime).
If holes injected from contact 3 can travel ballistically over a distance exceeding W (that is, can reach contact
1 without scattering), an extra positive charge would be accumulated near contact 1. As a result, the voltage
difference V21 = V2 − V1 should be negative (see Fig. 2a of the main text). In contrast, if the transport is
conventional (diffusive), holes from contact 3 travel along lines of the electric field and accumulate at contact 4.
Accordingly, the sign of V21 should be conventional (that is, positive). The same consideration for V21 is valid for
electrons. Therefore, the negative sign of Rb signifies ballistic transport over distances larger than W . Negative
Rb was reported in Fig. 2 of the main text for one of our devices (D2). Supplementary Fig. 5 provides further
examples of ballistic transport of BZ fermions using two other superlattices (devices D3 and D4). Pronounced
pockets of negative Rb are seen in Supplementary Fig. 5 at unit fractions of φ0 with q from 2 to 5. Despite
relatively small W ≈ 3 µm, no evidence for ballistic transfer was observed for high-order BZ states (p > 1),
in agreement with the results reported in the main text. Note that occasionally we observed negative bend
resistance away from φ/φ0 = 1/q (see, e.g., the vertical magenta stripe close to zero Vg in Supplementary Fig.
5a). Unlike the ballistic transfer resistance at unit flux fractions, negative signals away from the unit fractions
were not reproducible in different contact configurations. Such extra negative signals are not surprising in our
experimental geometry and well known to appear in the quantum Hall effect regime using narrow (mesoscopic)
devices8.

Figure S5: Ballistic transport of BZ fermions over micrometer distances. Fan diagrams obtained
in the bend resistance geometry for devices D3 (a) and D4 (b) with W = 3 and 3.2 µm, respectively. T =
2 K. Pockets of negative Rb are highlighted in magenta. Indigo-to-yellow: Log scale truncated between 10 and
2,000 Ω to optimize the contrast.

Ballistic transport of BZ fermions was found to be rather sensitive to T , and the pockets of negative Rb

universally disappeared above 30-50 K as shown in Supplementary Fig. 6. This is generally expected because
the mean free path of BZ fermions should become shorter at higher T . However, the exact scattering mechanism
could be nontrivial (see, e.g. Umklapp electron-electron scattering9) and requires further investigation.
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Figure S6: Temperature dependence of BZ fermions’ ballistic transport. An example of the bend
resistance measured at φ/φ0 = 1/2 using device D5 with W = 2 µm.

Supplementary Note 6: Supporting measurements in the longitudinal geometry. To crosscheck our
conclusions about ballistic transport of BZ fermions, we compare the negative bend resistance measurements
shown in Figs. 2c,d of the main text with those made in the conventional longitudinal geometry for the same
device D2 (Supplementary Fig. 7a). The longitudinal resistance Rxx for BZ fermions was found positive in all
the regions of the map where the negative bend resistance was reported, which corroborates the conclusion in
the main text about ballistic transfer of BZ fermions across the device.

Figure S7: Longitudinal resistance for ballistic BZ fermions. a, Rxx as a function of gate voltage and
magnetic field measured at 2 K for device D2. Color scale is the same as in Fig. 2c of the main text. b, Minima
found in the longitudinal conductivity are shown schematically. The color-coding is the same as for device D1
in Fig. 3b of the main text. The thin black lines mark LLs with the lifted spin and valley degeneracy for Dirac
fermions of the main spectrum.

Let us note here that, according to the group theory of irreducible representations for the group of translations
in a magnetic field, an electronic spectrum for each realization of BZ fermions should have an additional q-fold
degeneracy. This is prescribed by the fact that a group corresponding to any p/q fraction is non-Abelian (due to
Aharonov-Bohm phases acquired upon translations in non-colinear directions) but contains an Abelian subgroup
of translations corresponding to a magnetic superlattice with a q times larger supercell. The additional q-fold
degeneracy takes the form of q mini-valleys in the magnetic mini Brillouin zone with an area q times smaller
than the moiré superlattice Brillouin zone at B = 0. This degeneracy is additional to the 4-fold spin and valley
degeneracy of graphene’s original spectrum.

With this consideration in mind, the measurements in Supplementary Fig. 7 also support our other conclu-
sion that the full degeneracy of BZ fermions is 4q. Indeed, the q-fold degeneracy reported in Fig. 3 of the main
text corresponds to the case where both spin and valley degeneracies of both Dirac and BZ fermions were lifted.

5



Figure S8: Quantized Hall conductance for BZ fermions. a, σxy around φ/φ0 = 1/3. b, Hall conductivity
as a function of gate voltage at a number of constant B within the field interval around 11 T (color-coded).
The interval is marked by the horizontal lines in (a).

Supplementary Fig. 7 shows LL fans at 2 K, the temperature much higher than 10 mK for the measurements
in Fig. 3. Dirac fermions of the main spectrum exhibit the lifted spin and valley degeneracies by the relatively
strong B (thin black lines in Supplementary Fig. 7b). At lower fields B < 3 T, these interaction-induced gaps
become progressively smeared. As for BZ fermions, their mini-fans visible in Supplementary Fig. 7b reach
only the effective field |Beff | < 2 T, which does not allow the lifting of spin and valley degeneracies at this
temperature. Accordingly, only the main sequence of LLs for BZ fermions could be observed at 2 K, and it
corresponds to the 4q-fold degeneracy, as expected and explained in the previous paragraph.

Supplementary Note 7: Lifting mini-valley degeneracy. In the main text we reported additional quan-
tum Hall effect minima that cannot be explained within the single-particle Hofstadter-Wannier (dashed lines in
Fig 3b of the main text). Those minima in σxx were attributed to BZ states with lifted mini-valley degeneracy.
As an additional proof for the observed degeneracy lifting, Supplementary Fig. 8 shows measurements of Hall
conductivity σxy for the relevant range of B and Vg where the dashed lines occur in Fig. 3b. One can see well
developed plateaus with the quantized values that are fully consistent with the filling factors reported in the
main text and marked in Fig. 3b. This observation strongly supports our conclusions about lifting of all the
degeneracies of BZ fermions at low T .

The described lifting of mini-valley degeneracy involves very small energy gaps as witnessed by rapid dis-
appearance of the corresponding features with increasing T . Indeed, the quantized Hall plateaus seen in the
above figure and the conductance minima marked by the dashed lines in Fig. 3b of the main text could not
be resolved at 2 K. The features also disappeared rapidly with increasing the excitation current. For example,
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Figure S9: Landau mini-fans for different excitation currents. a and b, σxx(B, Vg) at 10 mK for 10
and 100 nA, respectively. Indigo-to-yellow log scale: 310 nS to 780 µS. c and d, Minima found in (a) and (b)
are shown schematically. The color-coded numbers are the filling factors for the nearby LLs. Thick black lines:
Main sequence of LLs for graphene’s Dirac spectrum.

Supplementary Fig. 9 shows a Landau mini-fan around φ/φ0 = 1/3 for currents of 10 and 100 nA. In the former
case (Supplementary Fig. 9a), there are clear minima associated with to the lifted mini-valley degeneracy. The
higher current (100 nA) resulted in complete smearing of these mini-gaps (Supplementary Fig. 9b), presumably
because of an increase in the electronic temperature.

Finally, let us draw attention to the rather unusual re-entrant behavior seen for the mini-fan around Vg =
28 V in Fig. 3 and Supplementary Fig. 9. The BZ-fermion gaps for ν = 18 and 21 seem to close within a certain
interval B and Vg. We attribute this closure to competition between these BZ states and the ν = 7 state from
the main Dirac sequence. The likely mechanism of the suppression of exchange gaps is discussed in ref.10.
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