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Supplementary section 1: Tolerance factors

We calculate τG as function of composition in fig. S1a and plot this for the CsyFA1–yPb(BrxI1–x)3

compositions studied in this work as well as those reported in Beal et al.[1]. The phase behavior
we observe is consistent with the Goldschmidt tolerance factor, but we do not observe a distinct
cutoff value above which the materials are cubic and below which they are tetragonal. In fig. S1a
and S1b, we highlight that for τG around 0.976, both crystal structures are observed. Note that
τG calculations for hybrid perovskites are complicated by the fact that it is difficult to determine
the radii of the organic cations [2]. Bond lengths between the organic cations and the halide ions
may also vary based on molecular orientation and may be different from the rigid sphere assumption
implicit in τG (refs [2, 3, 4]). Rather than redefining the ionic radii, Bartel et al. used the SISSO
(sure independence screening and sparsifying operator) method to identify a modified tolerance factor

τC = rX
rB
− nA

(
nA − rA/rB

log(rA/rB)

)
, where ri are still the Shannon radii and nA is the oxidation state

of the A-site cation [5]. τC was trained on experimental data and predicts the stability of 576
ABX3 (and A2B

′BX6) compositions in the perovskite (or double perovskite) crystal structure at
room temperature with > 90% accuracy [6]. Unlike τG, the probability that a material is perovskite
varies monotonically with τC , which predicts that compositions with τC < 4.18 will be stable in the
perovskite crystal structure [6]. We note that for the CsyFA1–yPb(BrxI1–x)3 compositions studied

here, nA = 1, so the equation simplifies to τC = rX
rB

+ rA/rB
log(rA/rB) − 1.

∗These authors contributed equally.
†Correspondance for this work should be addressed to M.F. Toney michael.toney@colorado.edu
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While τG was not explicitly trained to predict crystal structure within the perovskite classifica-
tion, we find that it does have a specific value that discriminates between the cubic and tetragonal
perovskite crystal structures for the CsyFA1–yPb(BrxI1–x)3 compositions studied here. Figure S1c
shows a contour plot for this corrected tolerance factor, and fig. S1d shows that unlike τG, there is a
distinct cutoff of τC = 3.55 above which materials are cubic and below which they are tetragonal.
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Figure S1: Comparison of the stable phase at room temperature and tolerance factors. (A) Contour
plot of the Goldschmidt tolerance factor τG as a function of Cs and Br substitution. Compositions
found to be cubic are plotted in blue, and compositions where tetragonal phase is present are plotted
in red. Dots represent data extracted from Beal et al. [1]. (B) Classifications of the room-temperature
crystallographic phase against the Goldschmidt tolerance factor classifier. (C & D) The same treat-
ment as in (A & B), except with the tolerance factor from Bartel et al. [6].
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Supplementary section 2: Fit of the Bragg Peaks

For a given composition, we fit the Bragg peaks with a Voigt function and a quadratic background
using a least squares method. To optimize the fit, we used the following procedure:

1. We started with the lowest temperature; we fit the data with a Voigt plus a quadratic back-

ground for the t(110), t(200), t(201) and t(210) peaks around q values of ∼1�A−1
, 1.4�A−1

,

1.7�A−1
and 1.6�A−1

, respectively. The Voigt function center, width and other parameters are
collected from the fitted peaks and from the quadratic background.

2. We then fit successively higher temperature data. For each incrementally higher temperature,
we initialise the fit with the parameters extracted from the prior (lower) temperature. The

peak center is allowed to vary from q[LT ]− 0.02 �A−1
to q[LT ] + 0.02 �A−1

, where q[LT ] is the
peak center at the lower temperature. The width is allowed to float ±30 % from the lower
temperature fit. The quadratic background shape is fixed but we allow a multiplicative offset
parameter to vary. This variation in overall background intensity reflects small changes in
background.

This allows us to retrieve the integrated intensities of the 4 peaks for the whole temperature range.
We observed that the widths of the t(110), t(200) and t(201) peaks narrow slightly with increasing
temperature (about 2 % per degree), which we attribute in the tetragonal phase to a reduction of the
c over a ratio and in the cubic phase to reduced nonuniform strain.

2.1 chi-squared analysis

The χ2 analysis allows us to distinguish the t(210) peak from background. At each temperature,

we examine the t(210) peak within a small q range of ±0.06�A−1
about the peak position. We

compare the χ2 statistic for two hypotheses: no peak (H0) and presence of the t(210) peak (H1). The
intensities for these two hypotheses are then given by: a quadratic function (H0) and a small Voigt
peak over a quadratic background (H1). We show here the analysis with the example of composition
CsyFA1–yPb(BrxI1–x)3 with x =20, y =25. For H0, we fit only the background with a quadratic
function of the form aq2 + bq + c. For H1, we fix the Voigt to the value obtained in the best fit.
As a result, we vary the three quadratic parameters (a, b and c) for the two hypothesis, allowing
comparison of the χ2, which are calculated with Python’s lmfit[7] as the non-normalized sum of
the residuals. At the temperature where the t(210) peak vanishes, we expect the fits with H0 and
H1 hypotheses to have equivalent χ2. This test defines the temperature T0 where the tetragonal
peak intensity goes to zero, and the result of this is shown in table 1 (main text). The χ2 values
for Cs0.25FA0.75Pb(Br0.2I0.8)3 are presented in figure S2. Examples of fits with the two hypothesis H0
and H1 for the t(210) peak above and below the temperature T0 are shown in figure S3 as a function
of temperature. Our conclusion is that that the t(210) peak goes to zero (within our error bars) at
about 56 °C (between 55 °C and 57.6 °C).The intensity of the peaks as a function of the temperature
are presented in figure 3a (main text). Our analysis for [x = 5 y = 17], [x= 17,y = 17] and [x =
30,y = 40] is similar to that described above. For the composition [x = 17,y =40], we observe a
background peak above the quadratic background with a small intensity, appearing at higher q that
the t(210) peak, and so we model the background with a quadratic function and a Voigt function for
this particular composition.
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Figure S2: Chi squares (truncated on the range 0-500) for the fit of a background at q = 1.6�A−1

(expected t(210) Bragg peak) with no peak (orange circles), with one peak of known intensity (purple
squares) or with two peaks of known intensity (blue triangles) versus temperature for the perovskite
of composition Cs0.25FA0.75Pb(Br0.2I0.8)3.

Supplementary section 3: Calculation of the Tilt Angle

Here we explain how the tilt angle was determined from the diffraction peak intensities. Note that
we define the tilt angle for one PbX6 octahedron, with Pb taken as the center and the angle relative
to the cubic phase atomic position of the halide.

3.1 Tilt angle vs intensity

The tetragonal phase (space group P4/mbm) corresponds to a rotation of the PbX6 octahedra around
the c axis. The calculation below relates the intensity of the t(210) peak to the octahedral tilt angle.
The results of these calculations are presented in figure 3 (main text). The intensity of a peak can
be written as:

Ihkl = A · |Fhkl|2 · p ·
(

1 + cos2 2θ

sin2 θ cos θ

)
(S1)

where Fhkl is the structure factor, p is the multiplicity, θ is the Bragg angle and A is a proportionality
factor independent of hkl [8].

Fhkl can be calculated with the following formula:

Fhkl =
∑
sites

(fPbe
−MPbe2jπq·rPb + fAe

2jπq·rA + fXe
2jπq·rX) (S2)
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Figure S3: Fits of I(q) diffraction pattern for composition 25-20 around q = 1.6�A−1
(corresponding

to the Bragg peak t(210)) with hypothesis H0 (no peak, left), H1 (Voigt with known intensity over
a quadratic background, right), for four temperatures around expected tetragonal-to-cubic phase
transition. The fits correspond to the chi-square analysis presented in Figure S2. The black dots
show the raw data, the brown line the background and the blue line the fitted background plus the
Voigt peak. Vertical lines show the center of the peak.
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tilt angle is denoted t. The atomic factors are taken as: fA = [Cs] × fCse
−MCs + (1 − [Cs]) ×[

2 · fCe−MC + fNe
−MN

]
(we assume that the atomic form factors of the hydrogen atoms of the FA

molecules are negligible compared to those of the carbon and nitrogen atoms).
fX = [Br]× fBre−MBr + (1− [Br])× fIe−MI

Here, e−Mi is the temperature factor related to the amplitude of the atomic vibrations. The
calculation of Mi is presented below.

We first extracted the amplitude and centers of all the peaks. We then obtained the A coefficient
by solving equations S1 and S2, using the intensity of the cubic peaks (c(100), c(110), c(111) that
correspond, respectively, to t(110), t(200) and t(201)). With the A coefficient found herein (taken
as the average of the 3 cubic peaks) and the intensity of the t(210) peak, we can extract, for each
temperature, the value of the structure factor Ft,210 using the following formula:

|Ft,210(T, t)|2 =
It,210(T )

A · p ·
(

1+cos2 2θ
sin2 θ cos θ

) (S3)

where p = 8 for the 210 peak. This gives us the tilt angle by matching with formula S2, that we
approximate for small angles as Ft,210 ∼ α · t. The tilt angle can now be found using:

t(T ) =
1

α
·

√√√√ It,210(T )

A · p ·
(

1+cos2 2θ
sin2 θ cos θ

) (S4)

The result is shown in figure 3a in the main text.
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3.2 Calculation of the Temperature Factors

The temperature factor Mi can be extracted from Debye’s theory, reported by R.W. James [8]:

Mi =
6h2T

mkΘ2
D,i

[
φ(xi) +

xi
4

](sin θ

λ

)2

(S5)

where h is the Planck constant, T is the absolute temperature, m is the mass of vibrating atoms,
k is the Boltzmann constant, ΘD is the Debye characteristic temperature of the substance, xi =

ΘD,i
T ,

φ(x) = 1
x

∫ x
0

ξ
eξ−1

dξ ≈ 1 + x2

36 −
x4

3600 + · · · , θ is the Bragg angle (equal to 2θ
2 in the grazing incidence

geometry, and λ is the X-ray wavelength.
The Debye temperature for each ion i in the perovskite structure is taken as ΘD,i = 150 K, with

the influence of the hydrogen atoms neglected.
The temperature factor Mi(T ) has little influence on the calculated tilt. This can bee seen in

figure S4 that plots the tilt angle for composition Cs0.4FA0.6Pb(Br0.17I0.83)3, calculated for different
Debye temperatures.

Figure S4: Tilt angle calculated for different assumptions of the Debye temperatures. ΘD is con-
sidered the same value for all atoms.
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3.3 Limitations of the method

The methodology described here for the extraction of the tilt angle was used because the assumptions
for Rietveld refinement are not necessarily valid for our thin films. Simulated powder diffraction
patterns of the respective perovskite composition and tilt angle show that the expected peak intensities
differ from those observed in our measurements. We show the result of the these simulations in table
S1 for a tilt angle of 7.4° (obtained for Cs0.4FA0.6Pb(Br0.17I0.83)3 at 29.8 °C, as well as the integrated
peak intensities. We note that the t(110)/t(001) peak at q = 1 is stronger than expected, and the
other peaks are somewhat weaker.

Table S1: Comparison between simulated pattern and integrated intensity of the experimental peaks
after azimuthal integration. Peak intensity is normalised for t(110/001).

peak simulated intensity integrated intensity

110/001 100 100
111/200 37.5 56.2
210 4.3 4.7
201 10.6 37.8

There is some preferred orientation or crystallographic texture in the XRD pattern that will impact
the peak intensity ratios in Table S1. The texture may originate from preferential growth orientation
during the film crystallisation. Figure S5a shows an I(q, χ) map for Cs0.4FA0.6Pb(Br0.17I0.83)3 at
29.8 °C, obtained from the XRD measurement using the PyFAI library [9], illustrating the texture.
To make this clearer, we show the azimuthal angle dependence of the integrated intensities of the
t(110/001) and t(210) peaks in figure S5b. The integration was made from the map in (a), using
a Voigt function over a linear background in I(q) for all values of the azimuthal angle χ. This
observation may explain the discrepancy shown in table S1. Due to this texture, there is a impact
on the exact tilt angles we calculate, but this does not impact our conclusions.

Figure S5: Texture of XRD pattern: a) I(q, χ) map with χ the azimuthal angle (angle with respect
to surface normal). Colormap from indigo (low) to yellow (high), b) intensity of the peaks t(110/001)
and t(210) for compositionCs0.4FA0.6Pb(Br0.17I0.83)3 at 29.8 °C. White slab corresponds to the missing
wedge where the integration cannot be performed due to the curvature of the Ewald sphere [10].
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Supplementary section 4: Fit of the tilt angle

As explained in the main text, we model the phase transition behavior with a smeared first order or
continuous transition. This is because we do not know if the heterogeneity is intrinsic or extrinsic.

A first order phase transition corresponds to a discontinuity in the order parameter (here the
tilt angle) that we model with a steplike function, whereas a second-order phase transition can be
described by a power law of the form: t ∼ (Tc − T )β, where β is the critical exponent for the phase
transition and Tc the average transition temperature. We convolute both the steplike and the power
law dependencies with a Gaussian distribution, to account for the compositional heterogeneity. We fit
the temperature dependence of the tilt t and the Gaussian width with these two convoluted function.
Both models are presented in figure S6. We note that it is not possible to distinguish between the
first order phase transition and continuous power law on these plots.

Figure S6: Octahedral tilt angle for composition 40-17, fitted with a smeared first order (magenta)
and a smeared second order (blue) parameter, that are respectively a step function (shown as a grey
solid line) and a power law (not shown), convoluted with a Gaussian (shown as a grey dashed line).
The transition width of the Gaussian is about 45 °C

.

The discontinuity of the step function is the temperature used as the average Tc in the main text
(table 1).
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Supplementary section 5: Lattice parameter behavior

As explained in the main text, unlike pure components where at the phase transition a′ and c converge
to the cubic phase d, the slightly divergent behavior of lattice constants in CsyFA1–yPb(BrxI1–x)3

originates from the compositional heterogeneity. One simple hypothesis to understand this is to divide
the CsyFA1–yPb(BrxI1–x)3 films into four different regions with high Cs-high Br, high Cs-low Br, low
Cs-high Br and low Cs-low Br. The phase diagram in the main text (Figure 3c) gives the relative
transition temperatures that Tlow Cs, high Br < Tlow Cs, low Br < Thigh Cs, high Br < Thigh Cs, low Br, which
is also consistent with the pure component transition temperatures, i.e. FAPbBr3, FAPbI3, CsPbBr3

and CsPbI3 [11, 12, 13].

Figure S7: Diagram for the proposed evolution of the lattice parameters with different concentra-
tions with four different tetragonal-to-cubic phase transitions (T1–T4). The mixed composition would
have a phase transition behavior broadened from T1 (phase transition temperature for the low Cs,
high Br compound) to T4 (phase transition temperature for the high Cs, low Br compound

.

This is schematically shown in Figure S7. As the temperature increases, these four regions trans-
form into the cubic phase according to their own transition temperature and their lattice parameters
have the same convergent behavior as pure compounds. Since our measured lattice constants from
t(210) and t(201) only reflect regions of the film in the tetragonal phase, lattice parameters in the
region that transform first (as temperature is increased) will not be averaged into the results in Figure
4 of the main text. Thus, the lattice parameters a′ and c shown in Figure 4 of the main text are
those from regions that remain tetragonal as temperature increases. We can use Figure S7, which
is a qualitative plot of the variation of a′ and c for several possible compositional variations, to ob-
tain some insight into the composition variations. Figure 4 in main text shows that as temperature
increases close to T0, a′ decreases and c increases markedly. In Figure S7, this corresponds to tem-
perature increasing above T1. Since c significantly increases, this suggests that the composition of
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the tetragonal regions above T1 has a lower Br concentration than the average (larger c), with likely
some regions of locally high Cs (smaller a′). Without a more refined model that is beyond the scope
of the present paper, quantitative analysis for region composition is not possible.

Supplementary section 6: EQE

The EQE is recorded between 300 and 800 nm. To find the band gap, we start by fitting the low
energy onset of the EQE with an error function (shown as a blue curve in figure S8. We extract
the bandgap from the intersection of the tangent (shown as an orange line in figure S8 to this error
function at the center (point of higher variation of the error function), with a linear fit taken for the
4 points with the highest wavelength.

Figure S8: example of the EQE at −19 °C (black dots) with an error-function fit on the low-energy
onset (blue curve). The orange curve shows the tangent in the center of this error function. The
green curve shows a linear fit of the 4 points of higher wavelength λ.
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